
Chapter 17

NEGATIVE-MASS INSTABILITY

Near transition, the slippage factor � decreases rapidly, thus decreasing the revo-

lution frequency spread coming from the energy spread. Landau damping therefore di-

minishes and the beam is subject to instability. Below transition, most proton machines

are dominated by space charge impedance. If the resistive part of the total impedance

is small, the proton bunches should be stable against microwave instability. However, as

soon as transition is crossed, the space charge force switches sign which together with

the vanishingly small value of the slippage factor will drive the beam to instability. This

is called negative-mass instability, the name coming from the fact that particle behaviors

above transition, for example, attractive space charge force and repulsive inductive force,

are the same as if they are having negative mass. All low-energy proton machines will

su�er from negative-mass instability while crossing transition. However, this instability

grows for a limited time only until the slippage factor � becomes large enough to damp

the instability. If the ring is well-designed so that the time interval of growth and the

growth rate are both small, negative-mass instability just results in a small increase in

bunch area. If the ring is not well-designed, the increase in bunch area will be so large

that the bunch may exceed the bucket height and even the momentum aperture of the

vacuum chamber resulting in beam loss. In a machine like the Fermilab Main Ring

where bunch coalescence is required to feed the Tevatron which is a colliding storage

ring, the growth in bunch area is especially important. This is because too large a bunch

area after transition will lead to undesirable large bunch area after coalescence, which

will in turn lower the luminosity of the Tevatron.

As was discussed in Sec. 6.1.3, while the Landau damping rate decreases as �, the
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17-2 17. NEGATIVE-MASS INSTABILITY

microwave instability growth rate decreases as
pj�j as well. The growth rate is therefore

time dependent, thus complicating the calculation of the total amount of growth in bunch

area.

17.1 Growth at Cuto�

In the absence of space charge or other coupling impedances, the motion of a particle in

the longitudinal phase space can be derived analytically [3] at any time near transition in

terms of Bessel function J 2

3

and Neumann function N 2

3

. With the introduction of space

charge, the growth rate of a small excitation amplitude can be evaluated by integrating

the Vlasov equation when the bunch has either an elliptical or bi-Gaussian distribution

in the longitudinal phase space. The total growth can then be tallied up by small time

steps across transition. Lee and Wang [1] made such a calculation for the Relativistic

Heavy Ion Collider (RHIC) at Brookhaven before the machine was built. The emittance

growth was taken as two times the growth of the excitation amplitude at the cuto�

frequency of the beam pipe, and the result was considered satisfactory. The choice of

the cuto� frequency comes from the assumption that electromagnetic waves emitted by

the bunch at higher frequencies will not bounce back from the beam pipe to interact

with the bunch. Wei [2] later studied the emittance growth of the Alternating Gradient

Synchrotron (AGS) at Brookhaven using similar approach. His simulation showed that

the emittance blowup had been very much overestimated. Wei pointed out that the

bunch emittance had been kept constant by Lee and Wang in the computation of the

growth for each time step. The bunch emittance was in fact growing and would provide

more Landau damping to counteract the instability. With the emittance updated at

each time step, he found the numerical calculations agree with the simulations.

17.1.1 Simple Model

With some suitable assumptions, the model of Lee-Wang-Wei can be made analytic,

resulting in some simple formulas for easy estimation [3]. First, let us begin with the

dispersion relation of Eq. (6.19) derived in Chapter 6 for the revolution harmonic n:

1 = �
�
�
0

n

�2 Z F 0(!)
�
=n� !

d! ; (17.1)
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where �
 = 
 � n!0 is the coherent angular frequency shift, 
 the coherent angular

frequency of the instability, and !0 the revolution angular frequency. In above, �
0 is

the coherent frequency shift driven by the longitudinal impedance Z
k
0=n without Landau

damping, which can be expressed as�
�
0

n

�2

=
ie�!2

0Ipk
2��2E0

Z
k
0

n
; (17.2)

and F (!) is the distribution in angular revolution frequency !,

F (!) =
1p
2��!

e�!
2=(2�2!) ; (17.3)

with

�! =
j�j!0

�2E0
�E (17.4)

the rms angular frequency spread in the bunch, �E the rms energy spread, E0 the

energy and !0 the angular revolution frequency of the synchronous particle, and Ipk =

eNb=(
p
2��� ) the peak current of the bunch of Nb particles and rms length �� = 1=�!.

Dimensionless variables are now introduced,

u =
!

�!
; z =

�


n�!
; (17.5)

and the dispersion relation takes the form

1 = �
�
�
0

n�!

�2 Z
G0(u)
z � u

du ; (17.6)

with

G(u) =
1p
2�

e�u
2=2 : (17.7)

Again, we assume the slip factor � to be linear in time near transition as given by

�

E0
=

2 _t
4
t
Erest

t =
eVrf!0 sin�s
�4

t
Erest

t ; (17.8)

where t is the time measured from the moment transition is crossed, Erest the rest energy

of the beam particles and Vrf the rf voltage. We get, from Eqs. (17.2), (17.6), and (17.8),

1 = �ia
t

Z
G0(u)
z � u

du ; (17.9)
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where

a =
eNb(Z

k
0=n)�

24
t
E2

rest

2
p
2�!0���2EVrf sin�s

; (17.10)

is a slowly varying function of t. Written in this form, all accelerator and bunch param-

eters have been embedded in the variable a and integral in Eq. (17.9) becomes machine

and beam independent.

Next, we want to compute the time t0 when � increases to such a value that stability

is regained. There are two simple situations. The �rst one is when the longitudinal

impedance is purely space charge or capacitive. Therefore, the parameter a is positive

imaginary number or �ia is real and positive. The integral must therefore be real. At

the edge of instability �
=n is replaced by �
=n+ i�, where � is a positive in�nitesimal

real number. The imaginary part of the integral is just �i�G0(z) = 0 or z = 0. This

corresponds to Point A on the threshold curve shown in Fig. 17.1. The principal value

part of the integral can now be performed easily and it integrates to unity exactly. We

obtain the solution

t0 = �ia(t0) ; (17.11)

where we write a(t0) because a is a function of �� , �E, !0, etc, which depend on time.

The quantities of largest variation with time in a(t) are �� and �E. It turns out that t0
in most cases is of the order of the nonadiabatic time Tc or larger, so that the bunch

area, which is conserved, is close to S = 6����E. Thus a(t) / �� . We notice from

Eqs. (16.19) and (16.54) that the variation of �� from t = 0 to t = Tc is at most � 10%.

Therefore, we can make the approximation that a(t) � a(t0) for all the later time at

which the bunch is unstable. With this approximation, we can compute from Eq (17.9)

the growth rate at other time t = t0t0, where 0 � t0 � 1. The equation to solve is

t0 =
Z

G0(u)
z � u

du : (17.12)

The solution is simple because the imaginary part of the right side has to vanish, leading

to z = iy, where y is real. We obtain�

t0 = 1�
r
�

2
y ey

2=2 erfc

�
yp
2

�
; (17.13)

�First express the right side of Eq. (17.12) in terms of the complex error function w(iy=
p
2) and then

use another representation of the complex error function to cast the result in the form of Eq. (17.13).
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Figure 17.1: The threshold dispersion curve for Gaussian distribution. Point A

corresponds to the situation where the longitudinal impedance is purely capacitive

such as space charge. Point B corresponds to the situation where the longitudinal

impedance is purely real such as the peak of a broad resonance.

where erfc(x) = 1� erf(x) is the complimentary error function. The integrated growth

per harmonic is given by

S+
n

=

Z t0

0

Im �


n
dt = t0

Z 1

0

�! Imz dt0 =
�EeVrf sin�s!

2
0t

2
0

��2
t 

4
t
E2

rest

Z 1

0

t0 Imz dt0 ; (17.14)

where Eqs. (17.4) and (17.8) have been used. In Fig. 17.2(a), we plot t0 Imz as a function

of t0 with the aid of Eq. (17.13). The last integral in Eq. (17.14) is 0.10346. With the

aid of Eqs. (17.10) and (17.11), the integrated growth per harmonic becomes

S+
n

= F spch
1 ��

�
e2NbjZk

0=nj�t2tErest

�2
S3eVrf sin�s

; (17.15)

where the constant is machine independent and is given by

F spch
1 = 27�

Z 1

0

t0 Imz dt0 = 8:776 : (17.16)
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Figure 17.2: Plot of t0 Imz, which is proportional to the growth rate as a function

of normalized time t0 = t=t0, where t is measured from the moment when transition

is crossed (t < 0 below transition and t > 0 above transition), and t0 is the time

when the slip factor � becomes large enough so that stability is achieved. Plot (a)

is the situation when the longitudinal impedance is purely capacitance like space

charge. Plot (b) is the situation when the longitudinal impedance is purely real like

the peak of a broad resonance. Note that there is no growth below transition when

the impedance is purely capacitive.

In above, we have used the fact that the 95% bunch area is S � 6����E, since t0 & Tc.

The rms bunch length �� will be evaluated using Eq. (16.52).

Another possibility to have a simple solution to Eq. (17.9) is to assume Z
k
0=n to

be purely real, for example at the peak of a broad resonance. Now the variable a in

Eq. (17.9) is real and positive. Therefore, we require the real part of the dispersion

integral to vanish. To derive the time t0 where the beam regains stability, we seek the

solution z = x + i�, where � is a positive in�nitesimal number. We �nd that x satis�es

1�
p
2 x e�x

2=2

Z x=
p
2

0

et
2

dt = 0 : (17.17)

This gives x=
p
2 = 0:924139 or

t0 =

r
�

2
x e�x

2=2 = 0:6972853 a(t0) : (17.18)
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This solution corresponds to Point B in Fig.17.1. Again, we approximate the problem

by evaluating a(t) at t0. Substituting back into the dispersion relation, the Eq. (17.9)

becomes

0:697285 t0 = �i
Z

G0(u)
z � u

du = �i
�
1 + i

r
�

2
z w

�
zp
2

��
; (17.19)

where t0 = t=t0 and w(z) is the complex error function. Next we need to relate the

growth rate, which is proportional to Imz, to the time t0 before stability is regained.

For each value of y = Imz, we require

1� Im
�r

�

2
z w

�
zp
2

��
= 0 ; (17.20)

by solving for x, where z = x + iy. This has to be solved numerically. The relation

of t0 Imz as a function of t0 is plotted in Fig. 17.2(b). The area under the growth-rate

curve is 0.211765 for 0 � t0 � 1. Unlike the situation of a purely capacitive impedance,

there is microwave growth both after and before transition. In this particular model

of a purely real impedance, the growth is symmetric about the time when transition

is crossed. The integrated growth above transition per harmonic S+=n is exactly the

same expression in Eq. (17.14) except that we now have t20 = (0:697285 a)2 instead of

the former t20 = jaj2. Thus, we also have the same Eq. (17.15) but with the constant

F spch
1 replaced by another universal constant F real

1 , where

F real
1 = 27�(0:697285)2

Z 1

0

t0 Imz dt0 = 27�(0:697285)2(0:211765) = 8:734 ; (17.21)

which happens to be very close to F spch
1 . The integrated growth per harmonic S�=n

below transition is exactly equal to S+=n.

When the condition that Zk
0=n is purely reactive or real is relaxed, the solution of

the dispersion relation will not be so simple. The result can also be expressed in the

form of Eq. (17.15). The numerical constant F1 will deviate from F spch
1 and F real

1 . Also

there will be a di�erent F1 for a di�erent phase in Z
k
0=n.

Here, we will apply these formulas to the Fermilab Booster, Main Ring, and Main

Injector, as listed in Table 17.1. Since the total growth is exponential, it is very sensitive

to the bunch area, impedance, number per bunch, and the growth harmonic. Even a

factor of two decrease in the bunch area or a factor of two enhancement in one of the

other quantities can increase the the total growth tremendously. Notice that some total

growths are more than 10000 fold. But this is only the growth of a spectral component
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and it is not easy to relate it to the growth of the bunch area. For this reason, the theory

of growth at cuto� is not so enlightening. We will analyze all the shortcomings of the

model and study the model of Hardt [6], which may provide a more reasonable criterion

of beam blowup across transition.

Table 17.1: Growth-at-cuto� theory applied to the Fermilab Booster, Main Ring,

and main Injector when the impedance is purely space charge or purely resistive.

Booster Main Ring Main Injector

95% Bunch Area S 0.025 0.15 0.15 eV-s

Number per bunch Nb 3� 1010 3� 1010 6� 1010

Beam pipe radius 5.00 3.50 2.66 cm

Nonadiabatic time Tc 0.216 3.00 2.14

Cuto� harmonic n 1510 28600 19900

Cuto� frequency 0.938 1.36 1.79 GHz

Purely Space Charge

jZk
0=njspch 30.0 2.63 1.72 Ohms

t0 2.23 2.30 2.71 ms

�� at t0 0.463 0.342 0.251 ns

Growth rate per harmonic S+=n 0.00619 7:40� 10�6 2:10� 10�5

Growth index S+ 9.35 0.203 0.416

Total growth exp(S+) 11400 1.23 1.52

Resistive Impedance

Z
k
0=n 15.0 10.0 1.6 Ohms

t0 0.549 8.58 1.52 ms

�� at t0 0.326 0.475 0.217 ns

Growth rate per harmonic S+=n 0.000125 1:66� 10�5 1:78� 10�6

Growth index S++S� 3.30 8.31 0.619

Total growth exp(S++S�) 27.0 4060 1.86

17.1.2 Shortcomings

In order to discuss the shortcomings of the Lee-Wang-Wei method, let us �rst review

some theory of the negative-mass instability. If we ignore Landau damping, the growth
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rate at peak current Ipk at the revolution harmonic n is given by

G(n; t) = n!0

 
j�jeIpkjZk

0=njspch
2��2Erest

!1=2

; (17.22)

where Erest is the particle rest energy, � the slippage factor, t the time measured from

the moment of transition crossing, and the space charge impedance given by"
Z
k
0

n

#
spch

= i
Z0g

2�2
: (17.23)

Here, Z0 � 377 ohms is the free-space impedance,  and � the relativistic parameters

of the bunch particle at or near transition, and g the space charge geometric parameter,

which has been derived in Sec. 3.2 at low frequencies as

g0 = 1 + 2 ln
b

a
; (17.24)

where a is the beam radius and b the beam pipe radius. A more accurate derivation

which is valid for high frequencies has been given by Keil and Zotter [7] in terms of Bessel

functions. The result of Eq. (17.24) arrives from the expansion of the Bessel functions

at zero frequency. At frequencies of the order c=b, c=a, or higher, the space charge

geometric parameter g rolls o�. When b=a is not too big, numerical �ttings show that

g(n) can be approximated by

g(n) =
g0

1 + (n=n 1

2

)2
; (17.25)

with the half-value revolution harmonic given roughly by

n 1

2

= R

�
1:6

b
+
0:52

a

�
; (17.26)

where R is the radius of the accelerator ring. It is clear from Eq. (17.22) that at

frequencies below the roll-o� of the space charge impedance, the growth rate for negative-

mass instability is directly proportional to the harmonic n. It will be shown later in

Eq. (17.56) that, when Landau damping is taken into account, the growth rate will be

modi�ed and the integrated growth becomesZ t0

0

G(n; t) dt / n
p
g(n) ; (17.27)
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where t0 is the time after crossing transition when the slip factor � becomes large enough

so that stability is restored. Thus, the integrated growth exhibits a maximum at nmax =

n 1

2

=
p
3. Taking as an example the Fermilab Main Ring, which has a radius of 1 km

and transition gamma t = 18:8, this corresponds to 77.6 GHz when a = 5 mm and

b = 35 mm. On the other hand, the cuto� frequency is only about 1.36 GHz. For

a typical cycle at an intensity of 3 � 1010 per bunch and emittance 0.15 eV-s, the

total growth across transition due to the space charge impedance for a spectral line is

1:74�105 times at the former frequency but only 1.23 at the latter frequency. Similarly,

the maximum integrated negative-mass growths for the Fermilab Main Injector and the

Fermilab Booster occur at 98.5 and 23.9 GHz, respectively. As a result, it is diÆcult

to justify the correctness of the description of Lee-Wang-Wei. In addition, in Wei's

simulation, the bunch was divided into bins with the bin width equal to the cuto�

wavelength of the beam pipe. In other words, all large-growth-rate amplitudes at high

frequencies had been neglected. Here, we want to point out that the �rst simulation

across transition to exhibit negative-mass instability was done by Lee and Teng [4] on

the Fermilab Booster, where they also divided the bunch up into cuto� wavelengths

only. Later, similar simulations on the same booster were performed by Lucas and

MacLachlan [5], and they also failed to include the high-frequency amplitudes.

Measurements were made near transition for the Fermilab Main Ring [8]. The top

row of Fig. 17.3 displays the observed signals around transition at frequencies 4, 5, and

6 GHz for proton bunches with initial longitudinal emittance 0.07 eV-s and 2:3 � 1010

protons. The units on the vertical axis are 5 db per division and on the horizontal

axis 2 ms per division. The transition time is marked with an arrow. As seen in the

�gure, the signals are getting stronger and more persistent with increasing frequency

as expected from the negative-mass instability. In this case, the longitudinal emittance

after transition was 0.25 eV-s corresponding to a blowup of 3.6. Next a phase mismatch

at injection was introduced to blowup the longitudinal emittance from 0.06 to 0.10 eV-s.

The lower row of Fig. 17.3 displays the signals observed at 5.0 GHz, with two di�erent

longitudinal emittances before transition. As expected, the 5.0 GHz signal is smaller

for the bigger longitudinal emittance, and dies away faster compared to the signal in

the case with the smaller emittance. The emittance blowup at transition is also much

smaller for the bigger initial emittance, a factor of 2 compared with 3.7.

One may raise the question that a typical proton bunch which is usually much

longer than the radius of the beam pipe will have a spectrum not much higher than the

cuto� frequency. In order to have a growth at harmonic n = nmax or n 1

2

, the original
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amplitude or the seed of the growth has to be supplied by Schottky noise, which is

extremely small, so that the growth e�ect to the bunch at such high frequencies may or

may not be signi�cant. This question will be discussed in Sec. 17.2.1 below, after we go

over the Schottky-noise model of Hardt [6].

Figure 17.3: Top row: negative-mass signals at 4.0, 5.0, and 6.0 GHz for bunches

with emittance of 0.07 eV-sec and 2:2� 1010 protons. The signals are stronger and

more persistent with increasing frequencies. The arrow marks the transition time.

Lower row: negative-mass signals at 5.0 GHz for bunches with the same intensity

but with longitudinal emittances 0.06 and 0.10 eV-s. The signals are smaller for the

larger emittance.

17.2 Schottky-Noise Model

Hardt assumed that the seeds of the negative-mass growth are provided by the sta-

tistical uctuations of the �nite number of particles Nb within the bunch on top of a
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smooth linear pro�le distribution F (��), where �� is the rf phase o�set measured from

synchronous angle. The smooth distribution F (��) has an average of unity but is nor-

malized to 2c��, the total bunch length. The bunch is divided into M bins in the rf

phase coordinate ��. There are NbF (��)=M particles in the bin at ��, and each bin

has a width 2c��=M . Due to the statistical uctuations, the mth bin contains ÆNm extra

particles. So a step function f(��; t), which is a perturbation to F (��), can be de�ned:

f(��; t) =
ÆNm

�N
if

m�1
M

<
��+ c��
2c�� <

m

M
; (17.28)

where �N = Nb=M is the average number of particles in a bin. The function can be

expanded in a Fourier series

f(��; t) =
1X

kb=�1
ckb(t)e

i2�kb��=(2c��) ; (17.29)

where

ckb(t) =
1

2c��
Z
c��

�c��

f(��; t)e�i2�kb��=(2c��)d�� ; (17.30)

and c0(t) = 0 because of charge or particle conservation. Notice that the expansion has

been made in bunch modes kb, or the number of wavelengths in a wave that can reside

in a bunch with periodic boundary condition at �c��. It should not be confused with

the revolution harmonic n, which is the number of wavelengths in a wave around the

circumference of the accelerator ring. The two are, however, related to each other by

kb
n

=
2c��
2�h

; (17.31)

where h is the rf harmonic. If we work with waves that vanish at the ends of the bunch

or �c��, we need only to include positive integral kb which represents the number of

nodes in the waves across the bunch. However, we are working here with waves that

satisfy periodic boundary conditions at �c��; we need to include all integral kb, positive

and negative.

Let us compute the statistical expectation

E
h
jckb(0)j2

i
=

1

(2c��)2
Z
c��

�c��

d��

Z
c��

�c��

d��0E
�
ÆNmÆNn

(�N)2

�
ei2�kb(�����0)=(2c��) : (17.32)
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Initially, without any contamination of instability, the statistical uctuations in the bins

are random, or

E
h
ÆNmÆNn

i
= Æmn�NF (��) ; (17.33)

where the right side is the expected number of particles in the mth bin, in which F (��)

is to be evaluated. This means that both �� and ��0 have to be in the same bin in

order to be nonvanishing. If we neglect the small uctuation of the phase inside a bin,

we can perform the integration over d��0, which just gives the width of the bin. What

is left behind in Eq. (17.32) becomes trivial, and we readily get

E
h
jckb(0)j2

i
=

1

(2c��)2
Z
c��

�c��

F (��)

�N

2c��
M

d�� =
1

Nb
: (17.34)

This result is important because it is independent of mode number kb and the number

of binsM , otherwise the model will become meaningless. This also explains why F (��)

has been de�ned to have an average of unity. The evolution of each mode amplitude ckb
is

jckb(t0)j �
1p
Nb

exp

Z t0=Tc

0

G(n; x) dx ; (17.35)

where G(n; x), the growth per unit x = t=Tc with Tc being the nonadiabatic time. The

following derivation will be very similar to what we did in the growth-at-cuto� model.

The integration is up to time t0 when the growth rate decreases to zero as the slippage

factor � increases.

Hardt employed an elliptical initial particle distribution in the longitudinal phase

space,y

 (��;�E) =
3

2�c��d�E
s
1� ��2c��2 � �E2d�E2 ; (17.36)

so that the linear distribution

�(��) =
3

4c��
 
1� ��2c��2

!
(17.37)

becomes parabolic. The o�set of angular revolution frequency �! = ! � !0 from that

of the synchronous particle is related to the energy o�set �E by

�! = � �!0

�2Erest

�E : (17.38)

yWe outline here our understanding of the original paper of Hardt, which is very condensed and is

diÆcult to read.
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Therefore, at a point ��1 along the bunch pro�le, the distribution in �! is

f(�!) =
2

�d�!
s
1� ��21c��2 � �!2d�!2

1� ��21c��2
: (17.39)

Starting from the Vlasov equation, a dispersion relation is derived and is given by

Eq. (6.19). For a perturbative wave with revolution harmonic n, the dispersion rela-

tion is

1 = �
�
�
1

n

�2 Z df(�!)=d�!

�
=n��!
d�! ; (17.40)

where �
 is the deviation of coherent angular frequency 
 of the collective motion from

n!0. We are working with the revolution harmonic now and will go to bunch modes

later. The factor before the integral can be written as [Eq. (6.19)]

�
�
1

n

�2

=
ieIlocal�!

2
0

h
Z
k
0(
)=n

i
spch

2��2Erest
; (17.41)

where we substitute for the local current

Ilocal =
3eNb!0

4c��
 
1� ��21c��2

!
; (17.42)

and the space charge impedance "
Z
k
0

n

#
spch

= i
Z0g(n)

2�2
(17.43)

with the geometric factor g(n) given by Eq. (17.25). The result is�
�
1

n

�2

= �3Nbrpg�h!
2
0

4�23Rc��
 
1� ��21c��2

!
=

�
�
0

n

�2
 
1� ��21c��2

!
; (17.44)

where R is the radius of the accelerator ring and rp the classical radius of the beam

particle. Notice that the last factor involving ��1 will cancel the same factor in the

denominator of the distribution function f(�!) in the dispersion relation.
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Changing the variable of integration from �! to

y =
�!

d�!s1� ��21c��2
; (17.45)

the dispersion relation simpli�es to

1 =
2

�

�
�
0

nd�!
�2 Z 1

�1

ydy

(�� y)
p
1� y2

; (17.46)

where

� =
�


nd�!s1� ��21c��2
: (17.47)

The integral on the right side of Eq. (17.46) can be readily performed to give �� +

��=
p
�2 � 1. We therefore obtain from the dispersion relation

� = � ap
a2 � 1

; with a = 1 +

 
nd�!p
2�
0

!2

: (17.48)

Now the dispersion relation has been solved. The imaginary part of 
 gives the growth

rate if positive and damping rate if negative. It is clear from Eqs. (17.47) and (17.48)

that the growth rate will be largest at the center of the bunch pro�le where ��1 = 0.

From now on we are going to concentrate on the bunch center and drop ��1.

The maximum half spread in angular revolution frequency d�! can be written in

terms of the half bunch length c�� via

d�! =
j�j!0

d�E
�2Erest

=
j�j!0Sc

��c�� ; (17.49)

where, for convenience, the dimensionless bunch area Sc = �c�c�� [Eq. (16.96)] has

been used. Thus,  
nd�!p
2�
0

!2

= � 2�RS2
c

3�2rpgNbhc�� : (17.50)

Notice that this is essentially the inverse of the bunch length multiplied by the space

charge force.
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Since we are after the growth of each bunch mode component near transition, all

quantities including the bunch length will be approximated by their values at transition.

Recall that under the assumption of a linear time variation of �=E, we de�ned in Sec. 16.5

a normalized space charge parameter �N0 in Eq. (16.95) and a normalized half bunch

length � in Eq. (16.94). Here, we want to introduce �N which is the same as �N0 with the

exception that the space charge geometric parameter g0 at zero frequency is replaced by

the more general g(n) which covers high frequencies. With the expression in Eq. (17.50),

it just turns out that  
nd�!p
2�
0

!2

= � x

�N�
; (17.51)

where x = t=Tc and Tc is the nonadiabatic time. The maximum half spread in angular

revolution frequency can also be expressed in terms of � via Eqs. (16.94) and (17.49) as

d�! =
j�jt
�Tc

s
Sc!0

2�h _t�t
=
jxj
�2

t

s
2Sc!0 _t
�h�t

; (17.52)

where the linear dependency of � near transition has been used.

With the help of Eqs. (17.47), (17.48), and (17.51), the growth rate (for x > 0) can

be expressed as

Im
 = nd�! Im� = nd�! �N�

x
� 1r

2�N�

x
� 1

: (17.53)

Now substitute ford�! from Eq. (17.52) and the de�nition of the nonadiabatic time. We

arrive at the growth per unit x = t=Tc,

G(n; x) = Tc Im
 =
n�N
h

s
Scj tan�sj�t

� _tTc

1� x

�N�r
2�N�

x
� 1

: (17.54)

As a reminder, on the right side of the above equation, n is the revolution harmonic

while �N is the normalized space charge parameter. We see that this growth rate starts

at zero right at transition (x = 0), increases to a maximum, and decreases to zero at

x = �N�. Thus the time when the beam regains stability is t0 = xTc = �N�Tc. The

accumulated or integrated growth Eacc is obtained by an integration over x from x = 0
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to x = �N�,

Eacc(n) =

Z �
N
�

0

G(n; x) dx : (17.55)

The integration can be performed easily with the change of variable u = x=(2�N�), and

the result is

Eacc(n) =
n�2

N
�

h

�
1� �

4

�sScj tan�sj�t
� _tTc

: (17.56)

We have computed the accumulated growth of a spectral line with revolution har-

monic n. Since the normalized space charge parameter �N is linear in the geometric

parameter g(n) of the space charge impedance, the dependence on frequency is therefore

Eacc(n) / n 
1 +

n2

n21
2

!2 : (17.57)

The maximum is denoted by

Emax =
3
p
3n 1

2

�2
N0�

16h

�
1� �

4

�sScj tan�sj�t
� _tTc

; (17.58)

where �N0 is the same as �N with the exception of the replacement of g(n) by g0, and

occurs when n = nmax = n 1

2

=
p
3. The accumulated growth Eacc will be exponentiated

to arrive at the total growth for a harmonic.

A criterion for negative-mass instability is required. Hardt made the assertion that

there is no negative-mass blowup if

1X
kb=�1

jckb(t0)j2 . 1 ; (17.59)

where t0 is the time when stability is regained. The meaning of this criterion will be

explored later. From Eq. (17.35), such a criterion is equivalent to

1X
kb=�1

exp
h
2Eacc(kb)

i
. Nb ; (17.60)

where Nb is the number of particles in the bunch and the summation is over all possible

bunch modes. Because exp [Eacc] assumes a maximum at n = nmax and falls o� rapidly
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later, the method of steepest decent will be employed. First, we �nd thatz

Eacc(n) � Emax

241� 3�n

2n 1

2

!2
35 ; (17.61)

with �n = n� nmax. Next, the summation over all the bunch modes is converted into

an integral

1X
kb=�1

exp
h
2Eacc(kb)

i
= exp

�
2Emax

� Z 1

�1
exp

24�2 3
p
Emax�kb
2kb 1

2

!2
35 d�kb ; (17.62)

where the bunch mode number kb has been used instead of the revolution harmonic

n. The relation between the two are given by Eq. (17.31). In particular the half-value

bunch mode is

kb 1
2

=
c��
�h

n 1

2

: (17.63)

The criterion of no blowup can be written as

Emax . Ecrit ; (17.64)

where the critical total growth Ecrit is obtained through Eq. (17.60) by equating the

right side of Eq. (17.62) to Nb; or

kb 1
2

3

r
2�

Ecrit
exp

�
2Ecrit

�
= Nb ; (17.65)

after performing the Gaussian integration. This is a transcendental equation which can

be solved by iteration, giving

Ecrit � 1

2

"
lnNb � ln

 
2kb 1

2

3

r
�

lnNb

!#
: (17.66)

The leading term, 1
2
lnNb, is usually an order of magnitude larger than the second term.

Take for example the Fermilab Main Ring which has a radius of R = 1 km and transition

gamma t = 18:8. The beam has a radius of a = 5 mm and the beam pipe radius is

zIn Eq. (17.61), we obtain [3�n=(2n 1

2

)]2 for the second order term, while it is [3�n=(4n 1

2

)]2 in

Ref. [6], which we think is incorrect. Therefore, we are getting slightly di�erent results for Eqs. (17.62),

(17.65), and (17.66).
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b = 3:5 cm. The half-value harmonic number n 1

2

= 2:81� 106 according to Eq. (17.26)

and the half-value bunch mode is kb 1
2

= n 1

2

!0
c��=� = 268 if we assume a half bunch

length of c�� = 1 ns. For a bunch consisting of Nb = 1011 particles the leading term is
1
2
lnNb = 12:7 and the second term is 0:57.

Finally, we will write out the criterion of no negative-mass blowup, Eq.(17.64), in

terms of the more familiar parameters of the accelerator ring and the particle bunch.

First, let us list the relevant expressions. They are the normalized space charge param-

eter at zero frequency

�N0 =
3�2Nbrpg0h

2RS
3=2
c

s
h!0

2��t _t
=

3�2Nbrpg0
2RS3=2!0

s
E3

rest�
2
t

2� _t
; (17.67)

and the normalized half bunch length at transition

� =

s
��t4t

2h!0 _tT
2
c Sc

c�� =
2
p
�

31=3�
�
1
3

� = 0:91749 : (17.68)

where the conversion, Sc=S = h!0=(�tErest) has been used. Substituting into the ex-

pression for Emax in Eq. (17.58), the threshold for no negative-mass blowup [Eq. (17.64)]

can be formulated by introducing a critical parameter c less than unity in the following

expression:

� nmax

�rp
R

�2 E
5=2
rest�

7=6
t

h1=3!
4=3
0 

2=3
t

! 
N2
b g

2
0j tan�sj1=3
S5=2 _

7=6
t

!
= cEcrit : (17.69)

When the critical parameter c < 1, there is no blowup. In above, the coeÆcient � is

� =
325=6�2�

�
2
3

�
241=6

�
1� �

4

�
= 2:44656 ; (17.70)

where �
�
2
3

�
= 1:354118 is the Gamma function, rp the classical proton radius, Erest

the proton rest energy, R the ring radius, g0 the geometric space charge parameter

at zero frequency, S bunch area in eV-s, �s the synchronized rf phase, t the transition

gamma, _t the rate at which transition is crossed, nmax the revolution harmonic at which

the accumulated growth is a maximum, which is related to the half-value revolution

harmonic by nmax = n 1

2

=
p
3, and kb 1

2

the half-value bunch mode which is given by

kb 1
2

= n 1

2

c��=(�h). We have written Eq. (17.69) in such a way that the last factor on
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the left side pertains to the properties of the beam while the two factors in front pertain

to the properties of the accelerator ring.

Some comments are in order:

(1) The critical condition
P

kb
jckb(t0)j2 = 1 implies, through Parseval theorem, that

1

2c��
Z
jf(��; t0)j2d�� = 1 : (17.71)

From the de�nition of the function f(��), the above integral can be re-written as

summation over the M bins,X
m

�
ÆN

�N

�2

m

(��)b

2c�� =
X
m

�
ÆN

�N

�2

m

1

M
; (17.72)

where �N is the average number of particles inside each bin and (��)b is the width of

the bin. Then Eq. (17.71) becomesP
m (ÆN)2m
M

= (�N)2 : (17.73)

The assertion of a negative-mass blowup is equivalent to the situation when the rms

uctuation in each bin is comparable to the average number of particles in each bin,

which is really a large particle uctuation or a big blowup in the bunch. This blowup

implies violent changes in the bunch, such as a total bunch breakup. However, the

assertion of Eq. (17.59) is a bit hand-waving, because even when the rms uctuation is

much less than �N , there can be a big blowup of the bunch emittance already. Hardt's

paper provides no recipe to compute the increase in bunch emittance in this regime.

(2) The derivation so far has been a perturbative approach. Here, we want to examine

its validity. The perturbation expansion is, in fact,

F (��) + f(��; t) = F (��) +
1X

kb=�1
ckb(t)e

i2�kb��=(2c��) ; (17.74)

where F (��) is the smooth linear pro�le distribution and f(��; t) represents the uc-

tuation from the smooth distribution. Notice that the unperturbed distribution F (��)

has an average of unity. Since Hardt only studied the situation of no blowup or when

the uctuation function f(�; t), as demonstrated in Eq. (17.71), has a rms of less than

unity, the perturbation is therefore justi�ed although the amount of growths of the ckb 's

from t = 0 to t = t0 are tremendous.
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We are going to apply this Schottky-noise model to the Fermilab Main Ring, where

many properties have been listed in Tables 16.1 and 17.1. Here, we want to study

the negative-mass instability when the ramping rate across transition is _t = 90:0 s�1.

Table 17.2 lists and Fig. 17.4 plots the computed critical parameter c for bunches of

Nb = 2:2� 1010 and 4:0� 1010 protons for various bunch areas according to Eq. (17.69).

The half bunch length is evaluated right at transition. We see that the parameter c

increases very rapidly as the bunch area shrinks to a certain size, S . 0:11 eV-s for the

4:0�1010 bunch and S . 0:07 eV-s for the 2:2�1010 bunch. In any case, there should not
be any negative-mass blowup when the bunch area is around 0.15 eV-s, as demonstrated

by experiment. For the Fermilab Main Injector, the ramp rate at transition has been

increased to _t = 160:1 s�1. Compared with the Main Ring at Nb = 4 � 1010 per

bunch, the blowup across transition does not occur until the bunch area is about or

smaller than S = 0:07 eV-s (Fig. 17.5). The Fermilab Booster ramps at _t = 406:7 s�1

across transition and can therefore accommodate bunches at much smaller areas without

blowup as indicated in Fig. 17.6.

Table 17.2: Critical parameter c for negative-mass instability for a proton bunch in

the Fermilab Main Ring with Nb = 2:2�1010 or 4:0�1010 particles. The ramp rate

across transition is _t = 90:0 s�1. A value of c & 1 implies negative-mass blowup.

Bunch area Half bunch width Nb = 2:2� 1010 Nb = 4:0� 1010

(eV-s) (ns) c Ecrit c Ecrit

0.040 0.439 3.84 10.23 12.70 10.54

0.050 0.490 2.21 10.18 7.31 10.48

0.060 0.537 1.41 10.13 4.65 10.44

0.070 0.580 0.96 10.09 3.18 10.40

0.080 0.620 0.69 10.06 2.28 10.36

0.100 0.693 0.40 10.00 1.31 10.31

0.120 0.760 0.25 9.96 0.84 10.26

0.140 0.820 0.17 9.92 0.57 10.22

0.160 0.877 0.12 9.89 0.41 10.19

0.180 0.930 0.09 9.86 0.31 10.16

0.200 0.981 0.07 9.83 0.24 10.13

0.220 1.028 0.06 9.81 0.19 10.11

0.240 1.074 0.05 9.78 0.15 10.09
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Figure 17.4: Plots showing the critical negative-mass parameter c as a function of

the Fermilab Main Ring bunch area for bunches with Nb = 2:2�1010 and 4:0�1010

protons. The ramp rate across transition is _t = 90:0 s�1. Negative-mass blowup

occurs when c & 1.

Figure 17.5: Plots showing the critical negative-mass parameter c as a function

of the Fermilab Main Injector bunch area for bunches with Nb = 4:0 � 1010 and

6:0 � 1010 protons. The ramp rate across transition is _t = 160:1 s�1. Negative-

mass blowup occurs when c & 1.
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Figure 17.6: Plots showing the critical negative-mass parameter c as a function of

the Fermilab Booster bunch area for bunches with Nb = 3:0 � 1010 and 6:0 � 1010

protons. The ramp rate across transition is _t = 406:7 s�1. Negative-mass blowup

occurs when c & 1.

17.2.1 Comparison of Growths at Cuto� and High Frequencies

For a parabolic bunch, the unperturbed linear distribution is

F (��) =
3

2

 
1� ��2c��2

!
; (17.75)

which is normalized to have an average of unity. It is expanded in a Fourier series at

t = 0,

F (��) =
1X

kb=�1
�akb(0)e

i2�kb��=(2c��) ; (17.76)

where the mode amplitude is, for kb > 0,

akb(0) = �akb(0) + �a�kb(0) =
3

�2
(�1)kb+1

k2b
: (17.77)

The bunch mode number kb which corresponds to the cuto� harmonic ncuto� = R=b, with

R and b being, respectively, the radii of the ring and the beam pipe, can be estimated
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Table 17.3: Final uctuation power spectra at cuto� and high-frequency Schottky

harmonics.

_t Nb Initial Bunch Emittance Final Power Spectrum of Fluctuation

(s�1) (1010) (eV-s) at ncuto� at nmax sum

90 2.2 0.05 3.70 1:50� 109 4:03� 1010

90 2.2 0.06 2.21 1:08� 102 3:97� 103

90 2.2 0.07 1.67 1:19� 10�2 5:74� 10�1

90 2.2 0.08 1.41 4:86� 10�5 2:93� 10�3

90 2.2 0.09 1.26 1:41� 10�6 1:06� 10�4

120 4.0 0.06 7.44 4:37� 1018 1:00� 1020

120 4.0 0.07 3.80 1:94� 109 5:83� 1010

120 4.0 0.08 2.54 4:40� 103 1:67� 105

120 4.0 0.09 1.95 1:02� 100 4:76� 101

120 4.0 0.10 1.64 3:57� 10�3 2:00� 10�1

using Eq. (17.31). Then, the �nal value of a power spectral line can be computed:

jakb(t0)j2 = jakb(0)j2 exp
"Z t0=Tc

0

2G(ncuto� ; x)dx

#
: (17.78)

The results are listed in Table 17.3 for various run cycles of the Fermilab Main Ring.

The beam pipe radius and the beam radius are kept �xed at b = 35 mm and a = 5 mm,

respectively. The synchronous phase is 60Æ. Alongside, we have also tabulated the

�nal size of the Schottky power spectral line at the high harmonic nmax according to

Eq. (17.35). The sum of all the Schottky power spectral modes has been derived in

Eqs. (17.35), (17.62), and (17.65) to be

1X
kb=�1

jckb(t0)j2 � jckb(t0)j2n=nmax
�
kb 1

2

3

�
2�

Ep

� 1

2

; (17.79)

where

Ep =

Z t0=Tc

0

G(nmax; x)dx (17.80)

is the integrated growth at the peak harmonic nmax and jckb(t0)j2n=nmax
= e2Emax=Nb is

just the absolute square of the component coeÆcient at n = nmax. This is also listed in

the last column of the table.
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We can see that the Hardt's blowup criterion of Eq. (17.59) appears to be critical,

where the growth changes tremendously. When the criterion is exceeded, the Schottky

modes are always larger than the mode at cuto�, showing that the inclusion up to cuto�

frequency is inadequate. On the other hand, below the blowup limit, the mode at cuto�

is larger than the high-frequency Schottky modes, implying that there should be modest

emittance growth below the Hardt's blowup limit. However, this does not tell us how

large the emittance growth is. It will be best if we can sum up the �nal power spectrum

of the bunch distribution:X
kb

jakb(t0)j2 =
X
kb

9

�4k4b
exp
h
integrated growth

i
: (17.81)

Unfortunately, this sum is divergent because the integrated growth is directly propor-

tional to kb. Even when we take into account of the space charge roll-o�, the sum still

becomes unreasonably large. The reason behind this is the breakdown of the linear per-

turbation when the perturbed spectral mode becomes larger than the unperturbed one.

As a result, it remains unclear whether the high-harmonic Schottky noise is dominating

in the growth of the bunch emittance. A simulation seems to be the best solution.

17.2.2 DiÆculties in Simulation

A simulation of the negative-mass instability is not trivial. There are two main diÆcul-

ties:

(1) Inclusion of high-frequency components

The growth of the Schottky noise peaks at nmax, which corresponds to roughly

78 GHz for the Fermilab Main Ring, while the half-value space charge roll-o� harmonic

n 1

2

corresponds to 134 GHz. Therefore, in simulations we need a bin size of about

1=(2� 134) or 0.00373 ns. The tracking code ESME [9] developed at Fermilab divides

the whole rf wavelength or 18.8 ns up into 2n bins where n is an integer, and the number

of bins will have to be at least 4096 which is too large. As a rule of thumb, the bins

should have a width less than a=, where a is the beam radius. Simulations of the Main

Ring across transition had been performed using ESME. As we increase the bin number

from 128 to 256 and 512, we do see self-bunching in the phase plot corresponding to the

highest frequency of 3.40, 6.81, and 13.6 GHz, respectively, in each of the situations,

as illustrated in Fig. 17.7. This suggests that the negative-mass growths at the high
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Schottky frequencies do play a role across transition [10]. In an actual simulation, the

space charge force is usually implemented by a di�erentiation of the bunch pro�le. To

maintain the same numerical accuracy, we need to follow the \three-in-one rule" [11],

which states that whenever the bin width is reduced by a factor of 2, the number of

macro-particles needs to be increased by a factor of 23. As a result, the tracking time

will increase by a factor of 24.

However, a typical Main Ring bunch has a full length of only 1 ns at transition. If

we divide just two or three times the bunch region into bins, there will be only 256 or

512 bins, which will reduce the tracking time drastically. S�renssen [12] had successfully

performed simulation with a bin width of a=. But he did not overcome the second

diÆculty that we are going to discuss next.

(2) The right amount of Schottky noise

In a simulation of microwave instability, there is usually ample time for the insta-

bility to develop to saturation. Therefore, we do not care so much about the size of

the initial excitation or seed of the growth. Across transition, however, the bunch is

negative-mass unstable only for a short time until the frequency-ip parameter � be-

comes large enough to provide enough Landau damping, and this time is typically of

the order of the nonadiabatic time, which is about 3 ms for the Fermilab Main Ring.

Therefore, the initial excitation amplitude needs to be tailored exactly. To have the

exact Schottky noise level, we need to use in the simulation micro-particles instead of

macro-particles. The Fermilab Main Ring bunch has typically Nb = 2:2� 1010 particles,

which is certainly unrealistically too many in a simulation.

A suggestion is to populate the bunch by NM macro-particles according to a Ham-

mersley sequence [13] instead of randomly. This is a population according to some

pattern so that the statistical uctuation will become much less. In fact, the number of

particles in each bin in excess of the smooth distribution will become O(1) initially, or
the uctuation function de�ned in Eq. (17.28) starts from f(��; 0) � 1=�NM =M=NM ,

where M is the number of bins and �NM = NM=M is the average number of macro-

particles per bin. The expectation of the initial bunch mode amplitude turns out to

be

E
h
jckb(0)j2

i
=

M

N2
M

: (17.82)

Comparing with Eq. (17.34) for a randomly distributed bunch, the required number of
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Figure 17.7: ESME simulations of a Fermilab Main Ring bunch containing 4�1010

particles with initial emittance of 0.1 eV-sec just after transition with (a) 256 bins

and (b) 512 bins in an rf wavelength; 20,000 and 160,000 macro-particles have been

used in the two cases. Excitations of 6.81 and 13.6 GHz corresponding to the

respective bin widths are clearly seen in the two plots.
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macro-particles becomes

NM = (MNb)
1

2 ; (17.83)

which is more reasonable (� 2:4 to 3:6� 106), but may be still too large to be managed

in a simulation.

There are, however, two other diÆculties with the Hammersley-sequence method.

In reality for a bunch containingNb particles, at themth bin, the step function f(��m; t)

de�ned in Eq. (17.28) has an initial expectation of

E
h
f 2(��m; 0)

i
= E

�
ÆN2

m

�N2

�
=
F (��m)

�N
=
M

Nb

F (��m) ; (17.84)

which is proportional to the initial unperturbed bunch distribution F (��). Here, �N =

Nb=M is the average number of micro-particles in each bin and ÆNm is the excess number

of particle in the mth bin because of statistically uctuation.. Now it changes to, for

the Hammersley population, E[f 2(��; 0)] = (M=NM)2 which is independent of F (��).

Thus, the relative uctuations in the bins cannot be made to resemble those in the

randomly populated bunch, and the initial uctuation spectrum would have been altered.

In order to have the bunch to �t the space charge modi�ed rf bucket before tran-

sition, we usually switch on the space charge force adiabatically over many synchrotron

periods so that the initial populated bunch emittance will be preserved. However, the

favored Hammersley statistics can often be lost after several synchrotron oscillations.

A test was performed with 2 � 105 particles in a truncated bi-Gaussian distribution.

The bunch was projected onto one coordinate, where it was divided into 20 equal bins.

To simulate synchrotron oscillation, the bunch was then rotated in phase space with an

angular velocity which decreases linearly by 1% from the center to the edge of the bunch.

The uctuation or number of particles in excess of the smooth projected Gaussian dis-

tribution in each bin was recorded for every rotation, and the rms was computed. The

results are plotted in Fig. 17.8 as a function of rotation number. We see that although

the rms uctuation starts from 7 initially, it increases rapidly to � 12 after 5 rotations,

� 20 after 20 rotations, and will approach its statistical value of 100 eventually. This

might have been an overestimation, because the actual decrease in synchrotron frequency

is not linear and the decrease near the core of the bunch where most particles reside is

very much slower. Nevertheless, this test gives us an illustration of restoration to ran-

domness. To cope with the fast restoration to randomness, one possibility is to compute

exactly the initial distribution of the bunch in the space charge modi�ed rf bucket right

at transition and populate the bunch according to a Hammersley sequence. In this way,
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Figure 17.8: Plot of rms uctuation of excess particles per bunch versus num-

ber of synchrotron rotations, showing the rapid loss of Hammersley statistics and

restoration to randomness.

the tracking of the bunch particles across the negative-mass unstable period, which is

usually of the order of one synchrotron period, may reveal the reliable growth from the

correct Schottky noise level.

17.3 Self-Bunching Model

Microwave instability can be viewed as self-bunching. The beam current Ipk, seeing the

impedance ZI , gives rise to an rf voltage IpkZI, and creates a self-bunching rf bucket

with an energy half height

�E

E
=

�
2�2eIpkZI

��nZErest

� 1

2

; (17.85)

where nZ denotes the revolution harmonic of the impedance. If this bucket height is less

than the energy spread of the bunch, there will not be any extra energy spread and the

bunch will be stable. If the bucket height is larger than the energy spread of the bunch,

the bunch particles will travel outside the original energy boundary of the bunch, giving

rise to an emittance growth as a result of �lamentation. In fact, this is just another way
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of expressing the Keil-Schnell criterion [14].

Here, we want to make the conjecture that this self-bunching bucket height deter-

mines the �nal energy spread of the bunch. Inside this bucket, the angular synchrotron

frequency is given by

!s =

�
nZ�IpkZI

2��2Erest

� 1

2

!0 : (17.86)

Since the frequency-ip parameter � is changing rapidly at transition, we substitute

�


=

2 _t
4t

t : (17.87)

If we denote by �syn the angle of rotation in the longitudinal phase space, we have

!s = d�syn=dt. Integrating Eq. (17.86), we obtain the time to reach a quarter of a

synchrotron oscillation (��syn = �=4) from the moment of transition crossing as

T �
�
3�

4

� 2

3

�
�Erest�

2
t 

4
t

nZIpkZI _t!2
0

� 1

3

: (17.88)

This will be the time required for some particles to reach the top of the bucket. Of

course, the height of the self-bunching bucket is also changing, and the value of � at

this moment should be substituted in Eq. (17.85). At this moment, the unperturbed

energy spread of an elliptical bunch with emittance S and without space charge distortion

is, from Eq. (16.79),

�E

E
=

�
�
1
3

�
21=231=6�

�
S�2

t 
2
t

ErestT 2
c _t

� 1

2

 
1� �

31=6�2
�
1
3

� T
Tc

!
; (17.89)

where

Tc =

�
�2
t 

4
t j tan�sj
2h!0 _2t

� 1

3

: (17.90)

is the nonadiabatic time. The correction in the second term of Eq. (17.89) is usually

small. Thus, the growth in energy spread can be computed easily, and assuming �la-

mentation the growth in emittance can be obtained. This estimate will be valid if T

is less than the time to regain stability. The growths for some situations of the Fermi-

lab Main Ring are given in Table 17.4. The corresponding growths obtained from the

growth-at-cuto� model are also listed for comparison.

There is at present no reliable simulation of emittance growth. Experimental mea-

surements are also marred by other mechanisms, such as bunch tumbling due to bunch-

length mismatch, particles with di�erent momentum crossing transition at di�erent time,
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Table 17.4: Growth of emittance for the self-bunching and growth-at-cuto� models.

_t Nb Initial Bunch Emittance Fractional Emittance Growth

(s�1) (1010) (eV-s) Self-Bunching Model Cuto� Model

90 2.2 0.05 4.09 4.06

90 2.2 0.06 3.03 2.43

90 2.2 0.07 2.35 1.83

90 2.2 0.08 1.89 1.54

90 2.2 0.09 1.52 1.38

120 4.0 0.06 5.32 8.16

120 4.0 0.07 4.12 4.17

120 4.0 0.08 3.31 2.78

120 4.0 0.09 2.72 2.14

120 4.0 0.10 2.29 1.80

etc. Another example at the Fermilab Main Ring is that the bunch emittance usually

grows to such a value that scraping occurs. Therefore, it is hard to judge at this mo-

ment the reliability of this crude model. On the other hand, this model can certainly be

improved to a certain degree by including, for example, the space charge distortion of

the bunch shape, the tilt e�ect in phase space near transition, as well as the mechanism

of overshoot when stability is regained.
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17.4 Exercise

17.1. The Alternating Gradient Synchrotron (AGS) at Brookhaven is a proton ring

with a circumference of 807.11 m. The beam crosses transition at t = 8:8 with

_t = 63 s�1. The rf harmonic is h = 12 and the synchronous phase is �s = 27:3Æ.
(1) With beam pipe radius 2.356 cm and beam radius 0.5 cm, compute the space

charge impedance at transition and the frequency at which the integrated negative-

mass growth is at a maximum.

(2) For a bunch withx 1 � 1012 protons, compute the critical stability parameter

c de�ned in Eq. (17.69) for various bunch areas. Determine the smallest bunch

area to avoid negative-mass blowup. Repeat the computation with the intensity

of 3� 1012 protons.

17.2. It is possible that the AGS described in the previous problem is dominated by

a broad-band impedance of Zk
0=n � 20 
 at 1.5 GHz. Use the simpli�ed model

developed in Sec. 17.1.1 to compute the total growth across transition. The bunch

area is assumed to be 6 eV-s.

xThe AGS is currently running at the intensity of � 1� 1013 particles per bunch with a transition

jump. Here, we are estimating the growth without transition jump.
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